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Turbulent diffusion of a passive scalar with a large-Schmidt number �Sc�1� is considered in the viscous
sublayer of a turbulent channel flow. Close to the wall, the corresponding eddy diffusivity coefficient is
expanded as a power series in terms of the viscous distance to the wall y. The coefficients of the series depend
on the Schmidt number and the analysis of recent numerical results allows to conclude that in the close vicinity
of the wall �y�Sc−1/3�, the y3 term is the dominant term; whereas, at distances relatively large from the wall
�Sc−1/3�y�1�, the y4 term becomes dominant. Accordingly, in this region the turbulent Schmidt number is
not constant but follows a hyperbolic law in terms of the distance to the wall that matches the values taken in
the vicinity of the wall, on the order of Sc−1/3, with the values of order unity in the rest of the viscous layer. The
implications of this behavior on the surface-transfer coefficient are analyzed.
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The classical model of eddy diffusivity with the gradient-
diffusion hypothesis introduced by Boussinesq �1� has been
among the more useful concepts in dealing with the closure
problem in turbulence theory. In spite of the vast amount of
literature devoted to this subject, turbulent diffusion remains
still—today—as a concept of fundamental interest �2–5� as
well as of practical importance. Particularly in wall bounded
turbulence �6�, eddy diffusivity is a key concept to develop
accurate wall functions allowing an efficient computation of
the surface-transfer coefficients from turbulent streams to the
confining walls.

Concerning the behavior of the eddy diffusivities very
close to the wall in the viscosity-driven layer known as vis-
cous sublayer, there is a long-standing controversy about its
dependence on powers of the distance to the wall. From di-
mensional arguments, Landau and Lifshitz �7� and Levich
�8� proposed that the eddy diffusivities should grow with the
fourth power of the distance to the wall, whereas a series of
experiments on mass deposition, compiled and discussed by
Monin and Yaglom �9�, supported a third-power dependence.
Levich-Landau’s argument is clearly inappropriate for the
eddy viscosity, where the third-power dependence is, nowa-
days, a theoretically well-founded result and, in fact, the last
edition of Landau and Lifshitz’s book �7� �see the footnote in
p. 174� admits the lack of an adequate theoretical explana-
tion. However, the thinning of the diffusive layer at large
values of the molecular Schmidt number could promote the
validity of the Levich-Landau’s proposition and some recent
experiments appear to support indirectly this kind of behav-
ior �cf. �10�, Fig. 22�. Remarkably enough, the same dis-
agreement exists in the engineering literature since the works
by Deissler �11� and by Sieder and Tate �12�, who found the
same discrepant results. The ambiguity appears reflected in
textbooks �13� and, to add more confusion to this puzzling
subject, other series of experiments �14� and numerical stud-
ies �15� point toward some intermediate �fractional� expo-
nents. This Brief Report aims to provide an explanation to
these contradictory facts supported by recent numerical re-
sults.

Consider the turbulent flow of a carrier fluid conveying an
admixture. The turbulent Schmidt number is introduced as
the ratio of the eddy diffusivities of fluid momentum and
solute concentration,

ScT �
�T

DT
. �1�

This number measures the relative intensity of both turbulent
transports and the knowledge of the values taken by ScT in
the vicinity of the limiting walls is an essential ingredient to
compute the solute mass transfer to the walls.

Reynolds analogy exploits the physical and mathematical
similarities between the transport of streamwise momentum
and admixture in order to connect the corresponding dimen-
sionless surface-transfer coefficients. This analogy can be
used even when the molecular Schmidt number Sc�� /D of
the admixture—ratio of the fluid momentum diffusivity to
the solute molecular diffusivity—departs slightly from the
unity �see, for instance, the book by Rosner �16��. However,
when the admixture is a heavy species �large molecules or
small particles�, its diffusion coefficient turns out to be rela-
tively small and the Schmidt number takes on large values.
Then, the influence of the confining wall on the diffusing
substance extends into the fluid stream only over a very thin
layer next to the wall where the mass transfer takes place
effectively. This diffusion layer is much thinner than the vis-
cous sublayer of the carrier fluid and the dissymmetry be-
tween the turbulent transport of admixture and fluid momen-
tum becomes strongly pronounced, leading to a mass
deposition rate which scales with the power Sc−q. Depending
on the behavior of the eddy diffusivity in the diffusion layer,
the exponent q becomes 2

3 , when the third-power term domi-
nates, or 3

4 , when the fourth-power term dominates �8,9�.
Note here that the following discussion can be translated
verbatim to the problem of heat transfer between the turbu-
lent stream of a constant density fluid and a solid boundary at
a different temperature, with the Prandtl number being the
relevant dimensionless group instead of the Schmidt number.
Thus, hereafter the discussion will attend to a general passive
scalar �i.e., without the back effect on the flow�.*pgybarra@ccia.uned.es
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Consider a fully developed turbulent channel flow and
denote by u� and v� as the turbulent fluctuations of the lon-
gitudinal and wall-normal components, respectively, of the
dimensionless fluid velocity in friction velocity units u�

���0 /� �17�, where �0 is the viscous shear stress on the wall
and � is the fluid density. The ratio of the viscosity and the
friction velocity �� /u�� characterizes the thickness of the vis-
cous sublayer, which is the natural unit of length in this layer.
By assuming analyticity in this viscous sublayer, the fluid
dynamics variables can be expanded in Taylor series in terms
of the distance to the wall. The leading term of the average
cross Reynolds stresses can be written as �see Pope �17�,
p. 288�

u�v��y→0 = − 4ū4y3 + O�y4� , �2�

where the overbar denotes Reynolds average and y is
the coordinate normal to the wall in viscous units �� /u��.
Commonly, magnitudes normalized with these so-called wall
units are denoted with a + superscript, such as y+, in the
fluid dynamics literature. To save notation, this + superscript
will be omitted here. In Eq. �2�, the negative factor �−ū4�
coincides with the coefficient of the y4 term in the expansion
of the average longitudinal velocity ū. Results from direct
numerical simulation �15,18� point to a value close to
2�10−4 for ū4.

Moreover, the Boussinesq gradient-diffusion law for the
turbulent transport of momentum along the wall-normal di-
rection can be written as

u�v� = − ��T/��
dū

dy
. �3�

Thus, according to Eqs. �2� and �3�, the leading behavior of
the dimensionless eddy viscosity coefficient in the viscous
sublayer on the wall turns out to be

��T/���y→0 = 4ū4y3 + O�y4� �4�

because ū�y in this region.
In a similar way, the turbulent transport along the wall-

normal direction of a passive scalar of concentration c can be
written as

c�v� = − �DT/��
dc̄

dy
, �5�

where c� is the fluctuation of the scalar concentration. Actu-
ally, due to the scalar transfer through the walls, the average
concentration c̄ changes along the channel, so strictly speak-
ing a partial derivative symbol should be used in Eq. �5�.
However, if the scalar diffusion coefficient is small, the lon-
gitudinal variation is a weak �higher order� effect and will be
neglected here �18�.

Thus, after Reynolds averaging and neglecting stream-
wise gradients, the leading contributions to the scalar trans-
port equation through the channel cross section is �see, for
instance, Pope �17�, p. 161�

dc�v�

dy
− Sc−1 d2c̄

dy2 = 0. �6�

The two terms in Eq. �6� account for the turbulent and Fick
transport effects, respectively. When the Schmidt number is

large Sc�1, Fick diffusion can be neglected to the leading
order except in the thin diffusion boundary layers that devel-
ops on the surface of the confining walls embedded in the
viscous sublayer, over a diffusive distance �D /u�� much
smaller than the viscous one �D /u��� �� /u��, such that y
�1 in this diffusion layer. In the core region of the channel,
turbulent dispersion dominates and keeps a constant average
concentration c̄� of scalar forced by the vanishing flux con-
dition �mirror symmetry� through the channel midline that
leads to c�v�=0 throughout the core region.

To analyze the thin diffusion layer, a suitable analytical
expression is needed for the turbulent flux c�v�. Equation �6�
with vanishing concentration and no-slip conditions on the
wall provides the following Taylor-series expansions in the
wall diffusion layer:

c̄�y→0 = c̄1y − c̄4y4 − c̄5y5 + O�y6� , �7�

c�v��y→0 = − 4c̄4Sc−1y3 − 5c̄5Sc−1y4 + O�y5� , �8�

where the corresponding expansion of v� �cf. Pope �17�, p.
283� has been used. Also, the general equation for the scalar
concentration specialized at y=0 to the leading order, i.e.,
�2c /�y2 �y→0=0, needs to be considered to show c2=0.

Thus, according to Eqs. �5�, �7�, and �8�, the expansion of
the dimensionless eddy diffusivity in the diffusion layer is

�DT/���y→0 = ay3 + by4 + O�y5� , �9�

where a�4c̄4 / c̄1Sc and b�5c̄5 / c̄1Sc. The general depen-
dence of these coefficients on the Schmidt number is not
determined a priori.

In the very vicinity of the wall �y�0�, the y3 term of Eq.
�9� is the dominant contribution and, from Eqs. �1�, �4�, and
�9�, the turbulent Schmidt number reaches a finite nonvan-
ishing value given by

ScT0 = 4ū4/a . �10�

Computational difficulties have prevented a fine numerical
resolution of the thin diffusion layer until very recently and
only a few numerical results are published about the value of
ScT0 when the molecular Schmidt number is large. The nu-
merical simulations performed by Bergant and Tiselj �19� on
a turbulent channel flow at Sc=100, 200, and 500 suggest
that ScT0 scales like Sc1/3 with a proportionality factor close
to the unity. The same conclusion follows from the compu-
tations by Na and Hanratty �15� at Sc=1, 3, and 10. When
these results are used to evaluate the product �aSc1/3�, the
tendency toward a constant limiting value close to 10−3 is
evident.

Thus, the available numerical results independently con-
duct to conjecture that the expansion of the eddy diffusivity
in the wall diffusion layer, when Sc�1, is of the form

�DT/���y→0 = 4ū4ASc−4/3�Y3 + BY4 + O�Sc−1/3�� , �11�

in terms of the strained coordinate Y �Sc1/3y, where A
��a /4ū4�Sc1/3 is on the order of unity, according to the pre-
vious discussion, and B�b /4ū4A will be seen later to be
also on the order of unity �see Fig. 2�.
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Expansion �11� clarifies the discrepancies referenced
above. At Sc�1 and Y on the order of unity, both contribu-
tions of Eq. �11� are equally important. Closer to the wall,
Y �1, the third-power term dominates, and the turbulent
Schmidt number approaches the constant value �10�. In con-
trast, sufficiently far for the wall Y �1, the eddy diffusivity is
ruled by the fourth-power term and the Levich-Landau’s
proposition holds. Numerical results from Bergant and Tiselj
for DT /� in the close vicinity of the wall and Sc=100 pro-
vide a clear evidence of this behavior when the data are
plotted in a log-log scale, as in Fig. 1 �Tiselj, private com-
munication�. The data for Sc=10 computed by Na and Han-
ratty �15� are also plotted in the same Fig. 1. In both cases,
each power law prevails in a region where the plot is char-
acterized by the corresponding slope. This slope changes no-
ticeably at a distance from the wall on the order of Sc−1/3

�Y �1� as predicted by Eq. �11�. Furthermore, these results
also provide the numerical estimates aSc1/3�6.5�10−4, b
�2.5�10−4 which lead to A�0.8, B�0.4. Thus, the thick-
ness of the region where the third-power term dominates
shrinks to vanishing values when Sc�1 and, through most
of the diffusion layer, the eddy diffusivity behaves like the
fourth power of the distance to the wall. This behavior was

also qualitatively pointed out by Na and Hanratty from nu-
merical simulations �cf. Fig. 3 in Ref. �15��.

A chief implication of the distinct behavior of the eddy
diffusivities is that the turbulent Schmidt number is not sim-
ply a constant, such as in the analysis by Garcia-Ybarra and
Pinelli �18�, but depends on the distance to the wall. In fact,
the expansions �4� and �11� in the diffusion layer lead to a
hyperbolic profile

ScT�y→0 �
ScT0

1 + BY
�12�

that reaches the maximum value on the wall �10� and de-
creases to comparatively vanishing values far from the wall.

In the viscous sublayer y	1, the expansion of Eq. �12�
for Sc�1 gives

ScT =
4ū4/b

y
+ O�Sc−1/3� . �13�

This result shows that in the viscous sublayer, the turbulent
Schmidt number takes on finite and nonvanishing values at
large values of Sc and that, when the wall is being ap-
proached, ScT grows with the inverse of the distance to the
wall, in apparent agreement with the numerical predictions
�19�.

Finally, by using expansion �11� for the eddy diffusivity in
Eq. �5�, the resulting expression for the turbulent flux can be
used to analyze the wall diffusion layer �y�1� and get the
passive scalar transfer to the wall. Based on Eq. �6�, the
analysis of this thin diffusion layer becomes a singular per-
turbation problem with the inverse of the Schmidt number
Sc−1 as the small expanding parameter �for an analogous
case but in the laminar regime, see �20��. In the related prob-
lem of a one-component fluid in a turbulent channel flow, the
effectiveness of matched asymptotic expansions was shown
recently by Panton �21�. In the present case, the channel
volume is divided into an outer asymptotic region which fills
most of the channel, where turbulent mixing forces a con-
stant scalar concentration c̄�, and an inner region, the scalar
diffusion layer, where the hydrodynamic effects are fully de-
termined by Eqs. �5� and �9�. In this diffusion layer, turbulent
transport and molecular diffusion cooperate to convey the
passive scalar but ultimately only molecular diffusion is ef-
fective on the wall because the turbulent transport vanishes
with the velocity. A first integral of Eq. �6�, with no-slip
condition on the wall and considering the form of the eddy
diffusivity �9�, leads to

�ay3 + by4 + Sc−1�
dc̄

dy
= 
Sc−1 dc̄

dy



y=0
. �14�

In view of the order of magnitude of coefficients a and b
�Eq. �11��, the only coordinate stretching that brings the mo-
lecular diffusion term to play at leading order in the limit
Sc→� is �= �bSc�1/4y. It is worthwhile to notice that this
stretching comes out from the balance between molecular
diffusion and the y4 term of turbulent diffusion, whereas the
y3 term turns out to be negligible. Indeed, the y3 term be-
comes comparable only at distances on the order of Sc−1/3

from the wall, but in this range turbulent diffusion is over-
whelmed by molecular diffusion. A second integration in Eq.
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FIG. 1. Numerical results for the dimensionless eddy diffusivity
very close to the wall: � Sc=10, from �15� and � Sc=100, from
�19�. A change in slope is manifested at a distance from the wall on
the order of Sc−1/3 �vertical dotted line� which separates two regions
driven by different power laws, as predicted by Eq. �11�. Continu-
ous lines correspond to Eq. �9� with aSc1/3�6.5�10−4 and b
�2.5�10−4 in both cases. The dashed line is the leading term of
the turbulent viscosity �T /�=7.9�10−4y3 �15�.
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FIG. 2. Normalized profiles of the average passive scalar distri-
bution in the diffusive layer versus the stretched coordinate �
= �bSc�1/4y for b=2.5�10−4. Points are excerpts from �15� �cf. Fig.
11�: � Sc=100, � Sc=500, and � Sc=2400. Continuous line is
Eq. �15�.
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�14� provides the parameter-free �universal� profile of the
passive scalar in the diffusion layer �c̄ / c̄��=F���, where

F��� �
2�2

	
�

0

�

�1 + �4�−1d�

=
1

	
�1

2
ln

1 + �1 + �2��2

1 + �1 − �2��2
+ arctan

�2�

1 − �2 �15�

and the matching with the passive scalar value in the core c̄�

has been imposed. Note also that �0
��1+�4�−1d�=	 /2�2.

Profile �15� is compared in Fig. 2 with numerical calcula-
tions computed for Sc=100, 500, and 2400 �15�. According
to the previous analysis, the three numerical profiles collapse
into a single curve when they are plotted in terms of the
viscous distance stretched with Sc1/4 in each case. Even
more, they agree with the theoretical profile �15� by perform-
ing the stretching with the value b�2.5�10−4.

On the other hand, the above result �15� allows to obtain
the dimensionless scalar transfer to the wall, which is defined
by K�Sc−1d�c̄ / c̄�� /dy �y=0 and gives

K = �2�2/	�b1/4Sc−3/4 �16�

to the leading order. It is straightforward to compute also the
contribution due to the y3 term, which corrects Eq. �16� up to
relative amounts on the order of O�Sc−1/6�, but they are nu-
merically insignificant. Deposition rates predicted by Eq.
�16� can be compared with the results from the mass transfer
experiments performed and compiled by Shaw and Hanratty
�cf. �14�, Figs. 8 and 9� on this kind of turbulent deposition
phenomena. When the experimental deposition rates were
correlated by a law, such as Eq. �16�, the best fit was pro-
vided by K=0.132Sc−3/4 which yields b=4.6�10−4. The or-
der of magnitude of this value is in good agreement with the
predictions made above although the value is larger by a
factor close to 1.8. Nevertheless, these experiments were

conducted in electrochemical systems and important aspects,
such as the electrostatic forces and the finite rate of the elec-
trochemical reaction, not considered in the present model,
could explain the deviations.

The main conclusion of this Brief Report is that in the
high Schmidt number limit of a passive scalar in a turbulent
wall flow, the distribution and deposition of the scalar are
controlled by a single coefficient, namely, the coefficient of
the y4 term in the near-wall expansion of the eddy diffusivity.
This coefficient is proportional to �minus� the coefficient of
the y4 term in the Taylor expansion of the average longitudi-
nal velocity ū4 and, according to the accessible numerical
results, its value appears to be b�2.5�10−4. To the leading
order, this coefficient does not depend on the molecular
Schmidt number and induces a hyperbolic growth of the tur-
bulent Schmidt number when the wall is approached. The
growth saturates due to the y3 term of the eddy diffusivity
whose coefficient a depends on the Schmidt number in such
a way that aSc1/3�6.5�10−4 is a constant, also proportional
to ū4. Nevertheless, the present numerical accuracy is not
enough to assign precise values to these coefficients and, on
the other hand, the available experimental results on mass
deposition rates are affected by electrochemical effects of
difficult assessment and allow only an order-of-magnitude
comparison.

This study is now being extended to account for other
transport mechanisms, such as inertia �22� and thermal dif-
fusion �or thermophoresis �20��, which are usually concur-
rent with molecular diffusion to enhance or reduce the scalar
transfer to the wall.
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